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Components of Climate Models

Atmosphere -
Sea lce
-~-Jm

Model Resolution — varies but roughly 50 — 200 km in the Ocean




Century-scale climate model projections
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Opportunities

 Some examples from the Atlantic using
the new Climate Model Intercomparison
Project version 5 (CMIP5)




4 Model average ASST (° C) & Cod locations

Atlantic_cod rcp85(2060-2099)-historical(1965-2005)
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Stratification changes
NCAR-CESM GFDL

NCAR - Stratification Difference
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Challenges

o Complexity — can be difficult to obtain,
process and understand output

e Scale — climate models often at coarser
resolution then some physical &
ecological processes of interest

v"Model bias

v"Uncertainty: several sources



Large-scale distributions of many variables
reproduced in climate models
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Source: IPCC AR4 WGL report, chapter 8



Annual Mean SST (°C)
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Climate Change: Sources of Uncertainty

e Forcing
Greenhouse Gases (CO,, Methane, etc.)
Aerosols, land use, black carbon ...

How will these change in the future?

“Emission Scenarios”, “what if questions”
Answer depends on economics, sociology, etc.

 Model Response
Model sensitivity — respond differently to forcing
(different physics, parameterizations, resolution ...)

 Internal (Natural) Variability
— coupled atmosphere-ocean-ice-land interactions



IPCC Projections of Climate Change
4th assessment report (AR4, 2007)
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SST averaged over NE US continental shelf.
SST anomalies relative to the 1965-2005
climate in each model.

NE US continental shelf large marine ecosystem
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Future North Atlantic SST changes across
GFDL CM2.1 Ensemble of simulations
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CCSMa3 Large Ensemble
SLP Trends 2005-2060
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Internal Variability (in one model)




Summary

Climate models provide guidance on how climate may change.

Difference will arise due to how people use fossil fuels in the
future

Due to different parameterizations models will give different
results

— Unclear if weighting models is a good idea, (not clear how to
determine good and bad models, e.g. good mean climate doesn’t
mean good response to climate change)

Expect a range of climate change outcomes due to natural
variability of the atmospheric circulation even for long-term trends.

— Any one realization is possible

Over US and adjacent oceans: GHG driven temperature changes
are more robust than those for dynamic quantities such as
atmospheric circulation or currents



Adaptation

Plan for a range of
climate changes

Decisions shaped
by vulnerability &
risk

Present¢ ¢ Future

Uncertainty

Signal: A Mean/Uncertainty
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CM2.1
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Assessing Climate Change in the Presence of
Unforced Multi-decadal Variability:
The CCSM Large Ensemble Project

Community Climate System Model v3 (CCSM3 T42)
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Different atmospheric initial states (Dec 1999, Jan 2000)
Same ocean, ice, land initial states (Jan 1, 2000)




Carbon Dioxide Concentration

IPCC (AR5) Scenarios (Different)
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2051-2100 — 1951-2000 SST & 200 m
ocean temperature from A2 simulations
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2051-2100 — 1951-2000 0 & 200 m
ocean Salinity from A2 simulations
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SST Anomaly (*C)

Variability Is generally more
prominent at regional scales
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Natural Climate Variability

Given the nonlinear nature of the climate system very small changes
can result in a very different state of the atmosphere (“butterfly effect”)
after just a few weeks. Extends to the climate system as a whole by
~5-10 years.

This has surprising consequences

Won't have skillful (deterministic) forecasts of the atmosphere after ~2-
3 weeks

e Can't forecast the NAO beyond 2 weeks

Still have lots of natural variability at decadal and longer time scales
frequency; e.g

e Can have 50 year trends in a given location In a “20™ century
simulation” where climate model is initialized in the 19" century) a
given time in the model will NOT match nature

e Can't directly compare time series from model to nature. Can
compare average over a period



Implications of Experimental Design

e The statistical properties of climate variability
may be captured by a model, but it will not be “In
phase” with the historical record.

e Often use “ensembles” a set of simulations with
the same forcings that only differ by their initial
conditions

— Spread of ensemble members measure of natural
variability)

— Each ensemble member is equally likely



Climate Change

A Mean
—

Present¢ ¢ Future

Uncertainty

Signal: A Mean/Uncertainty




Summer Precipitation Trends 2010-2060
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« Unforced component can be larger than
forced
« Unforced component has large spatial scales



IPCC AR4 (CMIP3) Model Archive
SLP Trends 2005-2060
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Model Sensitivity or Internal Variability?
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Sea Level Change (mm)
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Climate Models

Horizontal Grid (latitude - longitude)

Vertical Grid (height or pressure)

ATMOSPHERE
S R

Horizontal Resolution ~ 100-300 km
Vertical ~30 layers



Parameterizations for the Physics

Most of the physical process are at scales smaller
than the grid spacing

— Need to represent these sub-gridscale processes by mean
variables within the gridbox

— e.g. clouds function (T,g,convergent winds)

Atmosphere

— clouds:
* precipitation & radiation

— boundary layers
» Surface fluxes
Ocean
— Mixing by eddies
— Vertical mixing in upper ocean
— Flow over sills => deep water formation

Based on theory and observations (art)
Parameters “tuned” to get reasonable climate



Atmospheric CO, at Mauna Loa Observatory
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DIFFERENCE FROM 1951—1980 (°F)

SOME OBSERVED CHANGES IN CLIMATE

GLOBAL AVERAGE TEMPERATURE
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Global Warming Projections
From different Models

2070-2100 Prediction
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Climate Change in the 20t Century
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Atlantic Meridional Overturning
Circulation (AMOC)
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Should | weight models based on skill metrics?

e Active area of research that could reduce uncertainty
due to inter-model spread

 No accepted method - many cases where a model’s
ability to match contemporary regional features was
unrelated to a model’s ability to match the warming
trend (don't like draft a “good hitting” pitcher in the
American league)

* Present default is not to weight, though some “culling”
of highly aberrant simulations may be necessary (e.g.,
Overland et al., J. Climate, 24 2011)

Stock et al., 2011, Prog. Oceanogr. 88, 1-27



Climate Model Metrics

Ability to simulate mean climate features

Ability to simulate natural variability
— Statistics (e.g 30-year mean), teleconnections;
— NOT the observed temporal evolution

Model response to observed forcing
— Volcanic eruptions
— Seasonal cycle

— Paleoclimate information/events (e.g. glacial-
Interglacial variations; 6.2 ka event; etc.)

— Observed 20" century climate response (need to be
careful because of mix of natural & forced change)

Difficult to design a single set of metrics.

Whether a model Is “good enough” can often
depend on problem of interest.



Why do we trust climate model projections?

“There is considerable confidence that climate
models provide credible quantitative estimates
of future climate change, particularly at
continental scales and above. This confidence
comes from the foundation of the models in
accepted physical principles and from their
ability to reproduce observed features of the
current and past climate changes.”

Randall et al., 2007 (Chapter 8 of IPCC WG1 Report)



Regional Climate Change

Regardless of scale can bias correct

— Simplest is the Delta method
e Assumes Change not influenced by model bias

Use current GCMS
— Lack key features
e ~2 grid points in gulf of Maine

Increase resolution of GCMs
« Starting to happen but very computationally intensive
* Not all biases improve

Dynamical Downscaling

— Use finer scale physical models in a region where boundary
conditions are provided by GCMs



Regional Climate Change |

« Statistical downscaling

— Use statistical relationships between resolved,
larger-scale features and unresolved finer-scale
features.

— Relatively low computational cost but:
— Assume stationarity in the statistical relationship

— Selecting relevant predictors can be difficult
Requires long observational time series to
establish relationships

— If climate model projected change in correct
downscaled will be as well.



Annual Temperature: End of 215t Century
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Annual Precipitation: End of 215t Century
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Projected Changes in Weather Extremes

Table 1: Estimates of confidence in observed and projected changes in extreme weather and climate events.

Confidence in observed changes
(latter half of the 20th century)

Changes in Phenomenon

Confidence in projected changes
(during the 21st century)

Likely’

Very likely”

Very likely”

Likely’, over many areas

Likely”, over many Northern Hemisphere
mid- to high latitude land areas

Likely”, in a few areas

Not observed in the few analyses
available

Insufficient data for assessment

Higher maximum temperatures and more
hot days over nearly all land areas

Higher minimum temperatures, fewer
cold days and frost days over nearly
all land areas

Reduced diurnal temperature range over
most land areas

Increase of heat index'? over land areas

More intense precipitation events®

Increased summer continental drying
and associated risk of drought

Increase in tropical cyclone peak wind
intensities®

Increase in tropical cyclone mean and
peak precipitation intensities®

Very likely’

Very likely’

Very likely’

Very likely’, over most areas

Very likely”, over many areas

Likely”, over most mid-latitude continental
interiors. (Lack of consistent projections
in other areas)

Likely”, over some areas

Likely”, over some areas




Internal Variabllity in
Relation to Forcing and Model Sensitivity

Time Scale:
 Forcing - long timescales
* Model Sensitivity — all time scales

* Internal (Natural) Variability — short (< 10-20 years?)
— Increases as the spatial scale decreases

—  Will differ by variable
« Larger for precipitation than temperature in most areas

Model Experiments:
* Examine internal variability by using more than one run, i.e. an
ensemble of simulations

* Nearly all climate change studies have used one or a very
small number of ensemble members



Refined resolution AOGCMs

e Could fundamentally improve the resolution of shelf-
scale processes and basin-shelf interactions in climate
models

 Computational costs increase with the cube of horizontal
grid refinement

* Processes that were once sub-grid scale are now
resolved: parameterizations must be reformulated; some
large-scale features may look worse.

 May address some biases, but not all biases rooted In
resolution.

While more refined-resolution simulations (~1/8-1/4
degree) will be available in IPCC AR5, most will have

resolutions similar to those in IPCC ARA4.
Stock et al., 2011, Prog. Oceanogr. 88, 1-27
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Refined resolution Climate models

It is becoming increasingly feasible to run long time-scale
climate simulations at resolutions ~0.25 deg. In the ocean
or higher



Climate variability in century-scale
physical climate models

 Many climate models produce realistic
representations of prominent modes of
climate variability

e Can use climate change projections to study
climate variability, but don’t expect to be “in
phase” with observed variability

 Ensemble means and focusing on differences
between multi-decadal averages across
century time-scales helps isolate the climate
change trend



Climate models agree on many broad-scale
climate changes over the next century

Precipitation change, A1B, 2080-2099 — 1980-1999
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Projections of Future Temperatures
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Sea Level Rise

e Global average sea level
rise for the 20th century
was 4.4-8.8 inches

e Global average sea level
estimated to rise between
0.6 and 2 feet over 21st
century

Why? N\ TE

e Salt water expands as it
warms

= Melting of mountain R aaD-
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Anthropogenic (Human) Sources of
Greenhouse Gases

e Annual emissions of CO, from
fossil fuel burning increased
from an average of 6.4 GtCper
year in the 1990s, to 7.2 GtC
per year in 2000-2005

o Other GHGs have also
Increased: Global atmospheric
concentration of nitrous oxide
Increased from pre-industrial
value of about 170 parts per
billion to 319 ppb in 2005.

Contributions to Global Warming
by the Major Greenhouse Gases

Nitrous
Oxide
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Ensemble mean SST anomalies normalized by the
ensemble standard deviation of the historical (1965-
2005) climate mean from 4 models represents
confidence in climate change signal.
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Potential temperature (CESM)
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